Coating on Marine Environment

Sertac Kesebol

14.05.2024

Certificate of Achievement Level II

This is to certify that:

Sertac Kesebol

has successfully completed the

Corrodere / PPG Protective and Marine Coatings Inspector Training Programme in association with MPI

Education :

2005 - 2011	Anadolu University (Eskisehir)
	Business, Bachelor Degree, 70/100
2019 -	Yildiz Technical University (Istanbul)
	Naval Architecture and Marine Engineering, PhD.
2008 - 2012	Yildiz Technical University (Istanbul)
	Naval Architecture and Marine Engineering, Master Degree, 3,70/4,00
Thesis	:(Breakdown and Reasons in Dynamic Parts of Marine Diesel Engines)
2003 - 2007	Yildiz Technical University (Istanbul)
	Naval Architecture and Marine Engineering, Bachelor Degree, 3,27/4,00
Thesis	:(Paint to be used on Vessels/Ships and Antifouling Paints)
2002 - 2003	Yildiz Technical University (Istanbul)
	English School of University
1998 - 2002	Tuglacılar High School (English) (Tekirdag)
	High School

Experience :

November 2021 - SGMCOATING YUZEY TEKNOLOJILERI SAN. TIC. LTD. STI.

Managing Director

March 2011 - PPG INDUSTRIES KIMYA SANAYI VE TIC. A.S.

November 2021 PPG/SIGMA Marine Key Account Manager

February 2008 - UNISERVICE TURKIYE

July 2009 Executive for Sales, Marketing, Purchasing and Supply

November 2007 - UNISERVICE TURKIYE

February 2008 PPG/Ameron Technical Advisor for Paint

 According to technical specification and current issues, controlling the surface preparation, paint applications, checking the conditions after application and

reporting the results.

<u>Internship</u>:

August 2009 - ARKAS DENIZCILIK NAKLIYAT A.S.

March 2010 Engine Staff on MV Tomriz A

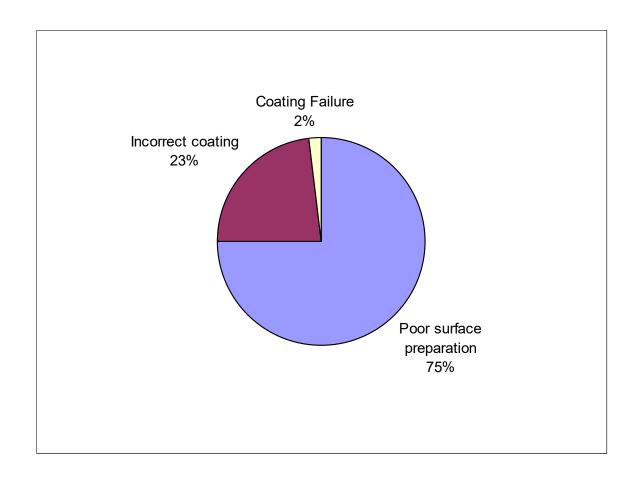
- 1. Corrosion
- 2. Surface Preparation Methods
- 3. Paint Technology
- 4. Paint Application Methods
- 5. Paint Defects
- 6. Dry-dock Operations

1. CORROSION

- Corrosion is a reaction between a metal and the surrounding environment.
 - Atmospheric
 - Immersed
 - Chemical
- The corrosion rate depends on the properties of the metal and the corrosivity of the environment.
 - High Humidity
 - Saline condition
- Corrosion is dissolution of metal, involving release of electrons:

Fe
$$\rightarrow$$
 Fe²⁺ + 2e⁻¹

Types of corrosion


- 1. High temperature corrosion
- 2. Chemical corrosion
- 3. Electrochemical corrosion
- 4. Galvanic corrosion
- 5. Crevice corrosion
- 6. Pitting corrosion
- 7. Corrosion under mill scale
- 8. Microbiological corrosion
- 9. Stress corrosion (e.g. by chloride, sulphur)
- 10. Etc

2. SURFACE PREPERATION METHODS

Cleanliness:

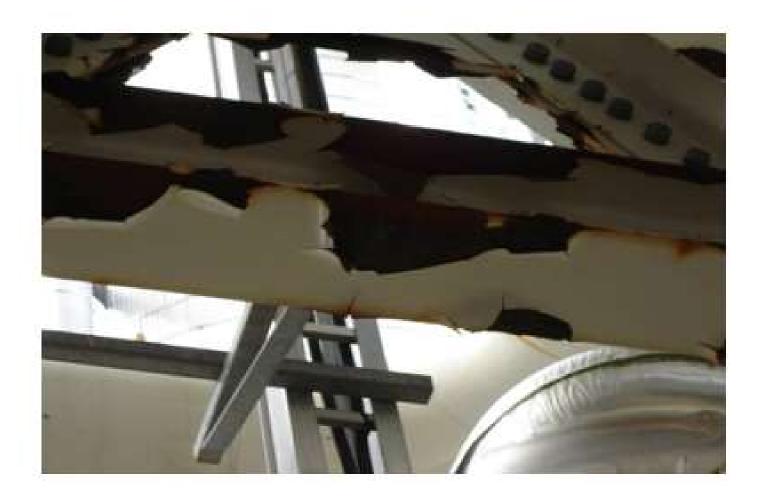
Removal of contaminants

Visible items (rust, old paint, grease, mill scale, weld spatters etc)

Non-visible item (chloride, dust, etc)

Surface profile:

- Anchor pattern



Blisters caused by chlorides

Detachment due to mill scale

Lack of anchor profile

Damage due to sharp edge (low dft, easy to damage)

Irregularity

Sharp corners / edges

Undercuts, bad welds

Problem

Entrapped air

See also ISO 8501-3

Correction

Grind to radius of 2 mm

Grind flush

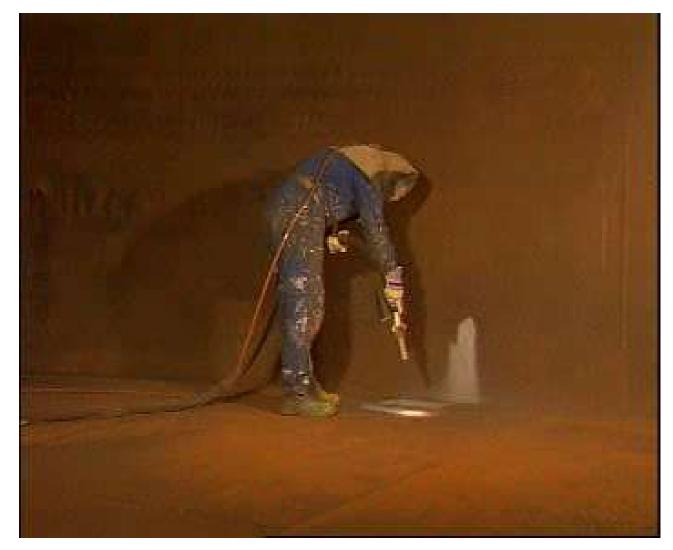
Fill with weld metal & grind flush

Chemical treatment

- Solvent cleaning (organic solvents, emulsion)
- Acid pickling

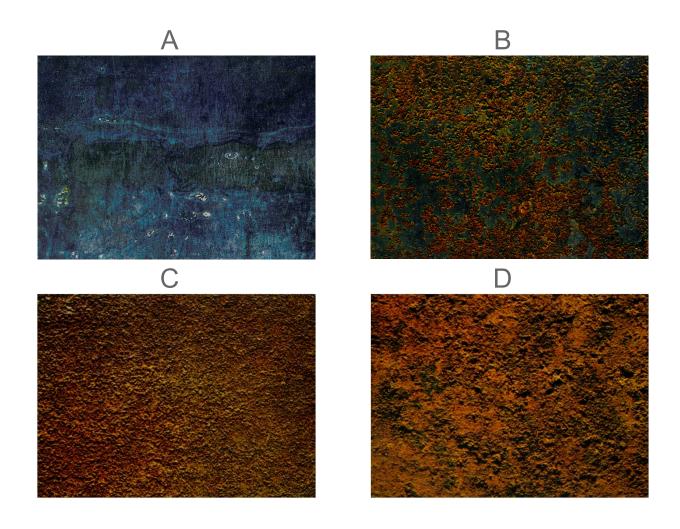
Mechanical cleaning

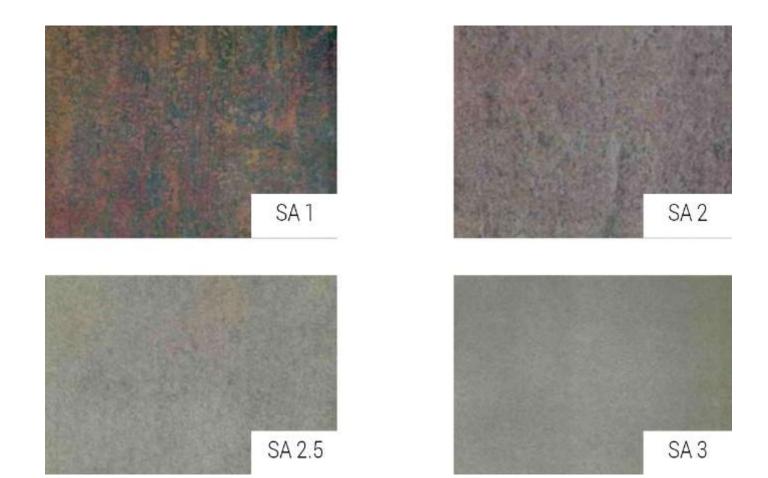
- Hand and power tool cleaning (Small areas, steelwork)
- Abrasive blasting
- Water jetting


Thermal cleaning:

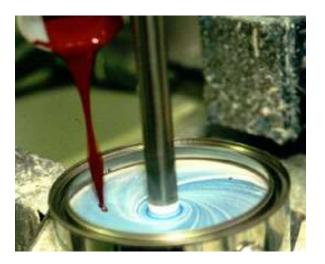
- Steam
- Flame

- Best performance can be obtained by use of abrasive blasting
 - Different methods depending on location, equipment etc.
 - Used standard is mainly ISO 8501-1 but also SSPC
 - Advantage
 - Can remove mill scale and all other hard residues
 - Creates profile
 - High performance of the applied coating system can be achieved depending on cleanliness (Sa 2½ or better)
 - Disadvantage
 - Lot of chemical waste
 - Dust formation




(ISO 8501-1 / SSPC)

ISO	SSPC	Description
Sa 1	SP-7	Brush off
Sa 2	SP-6	Commercial
Sa 21/2	SP-10	Near white
Sa 3	SP-5	White


- Hand and powertool cleaning:
 - Rust and other contamination could still be present, therefore a Surface Tolerant coating is recommended.
- Blast cleaning
 - Atmospheric:
 - If blasted till Sa 2½ is achieved, zinc epoxy and zinc-silicate primers and other non surface tolerant but also surface tolerant.
 - If Sa 2½ is not achieved a surface tolerant is recommend
 - Immersed:
 - Non-surface tolerant and surface tolerant. NO zinc.
- Water jetting:
 - Surface Tolerant only since the substrate is always flash rusted

3. PAINT TECHNOLOGY

Paint consists of 4 main ingredients

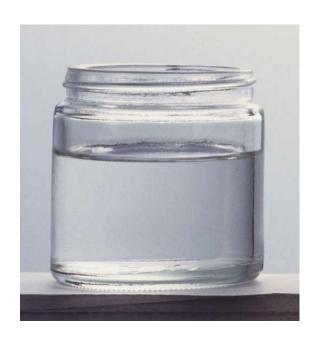
- Binder (resin)
- Pigment
- Solvent
- Additives

BINDERS

- The main ingredient
- Generically how the paint is named
 - Alkyd
 - Epoxy
 - Polyurethane
 - Chlorinated rubber
 - Acrylic
 - Polysiloxane
 - Silicate
- Dictates coating properties

PIGMENTS

Many different types & functions

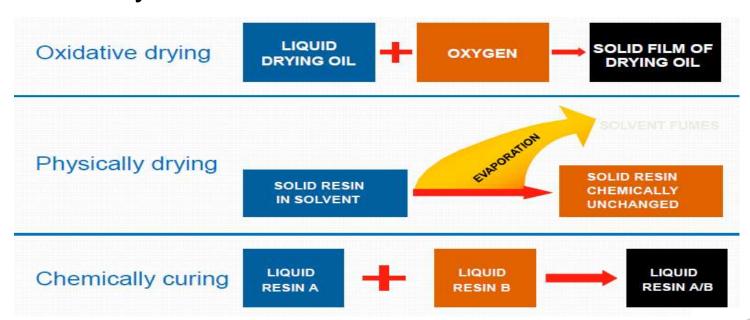

- Anti corrosive
 - Zinc dust
 - Zinc phosphate
- Colour
 - Titanium dioxide
 - Red oxide (iron oxides)
- Fillers
 - Talc
 - China clay
- Barrier
 - MIO
 - Aluminium

SOLVENTS

- Acts a transport medium
- Enable application
- Effect drying & curing
- Types are
 - Hydrocarbon (white spirit)
 - Alcohols
 - Ketones
 - Aromatics xylene
 - Water

ADDITIVES

Used to offer a range of properties

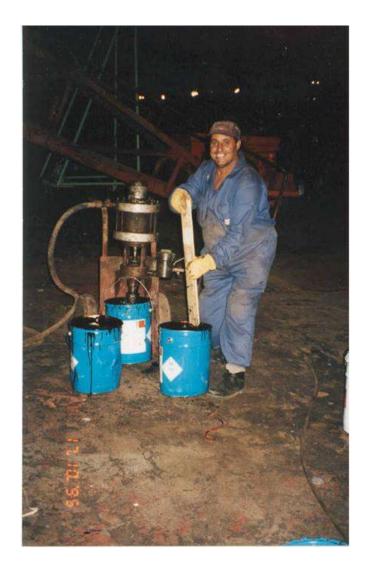

- Aid dispersion
- Prevent bubbles
- Aid application
- Aid surface wetting (adhesion)
- Structuring agents

3 main methods and categories:

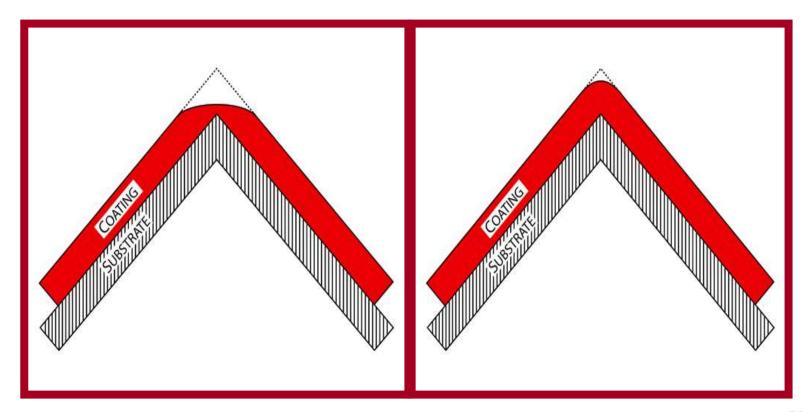
- Physically drying Chlorinated Rubber, Epoxy, PU, Acrylic
- 2. Oxidative curing Alkyds, Silicates, Polysiloxane
- 3. Chemically curing Epoxy, Polyurethane, Polysiloxane

4. PAINT APPLICATION METHOD

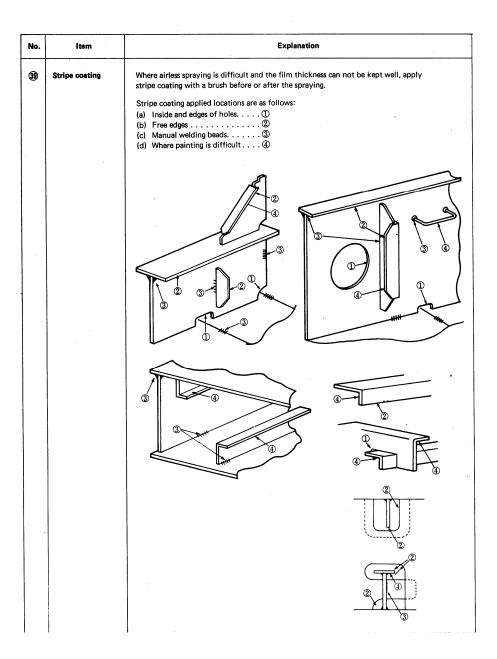
- Mixing
- Equipment (spray, brush, roller)
- Wet film thickness
- Dry film thickness
- Film integrity (holiday testing)



PAINT TEMPERATURE ≥ 15° C



Mixing correct?



Why Stripe coat

Stripe coating

Stripe Coating

Environmental Conditions

Critical Conditions during surface preparation, application and curing are:

- Temperatures
 - Air
 - Steel
 - Material
- Relative humidity
- Dew point

Coating Inspection Equipments

Relative Humidity & Dew Point

Steel Surface Profile comparator

Steel Temperature gauge

Chlorides / Conductivity meter

5. PAINT DEFECTS

Defects:

- Blistering
- Corrosion
- Pin point rusting
- Delamination
- High / low dft
- etc

- Poor surface preparation
 - Contaminations (e.g. soluble salts)
- Solvent retention
 - Film thickness
 - Overcoating times
 - Ventilation
- Compatibility existing coating system
 - Physical drying products
- Chemical resistance
 - Coating not resistance to cargo
- Other causes like cathodic protection, osmoses etc

Blistering

Pin Point Rusting

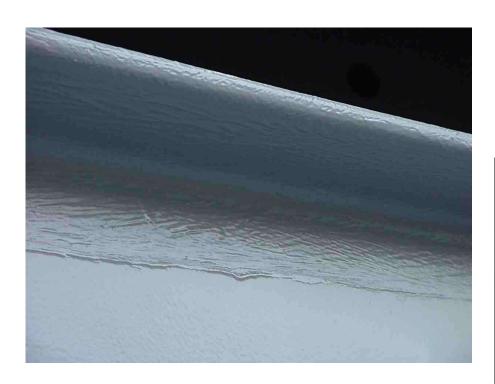
In general caused by:

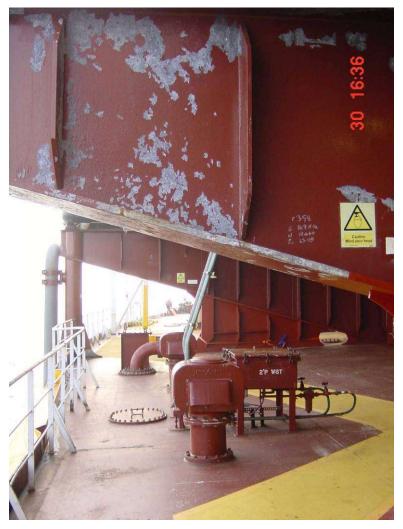
- Non closed film
- Dry spray
- Popping

Corrosion

- See "blistering"
- Application
 - Surface preparation
 - Film thickness
 - Stripe coating
- Galvanic action
- Mechanical damages

Delamination


- Surface preparation
- Application
 - Environmental conditions
 - Film thicknesses
 - Ventilation
 - Overcoating times
- Corrosion


High DFT (Dry Film Thickness)

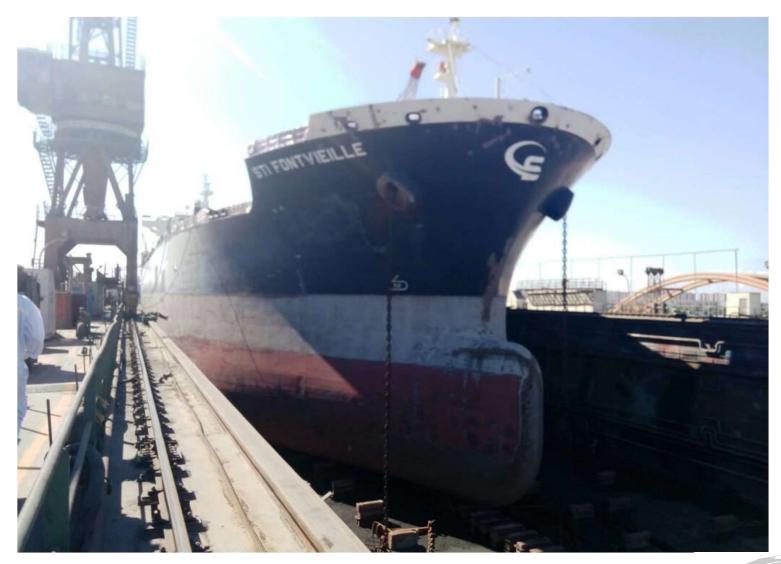
Low DFT (Dry Film Thickness)

Welding

Cracking

Chalking / Discoloration

Bad coating practice



Good coating practice

5. DRY-DOCKING PROCESS

Dry-Docking

- Sea going ships need to go in dry-dock for technical inspection by the classification society, every 3 years (36 months).
- For new ships this can be extended to 5 years or even 7,5 years (90 months).
 - Usually:
 - Spot repairs on damaged coating
 - Refresher coats (on TS)
 - New antifouling protection
 - Typical areas:
 - Ship's sides (TS and BT)
 - Under water hull (VS and FB)
 - Occasionally:
 - Seawater Ballast Tanks
 - Potable Water Tanks
 - Cargo Holds / Tanks

Dry-Docking – Critical Stages & Challenges:

- Pre-Docking Preparation
 - Pre-Docking Survey
 - Last Dry-Docking & Sea-Stock Report
 - Adequate & Compatible Materials Supply?
 - Statistical Local Weather for the season
- In-Dock Condition Inspection
 - Timely & Qualified Survey
 - Realistic Estimations
 - DD Activities & Facilities Planning
- Surface Preparation & Paint Application
 - Activities & Procedures Compatibility
 - Drying, Curing & Over-Coating Times
 - Damage & Contamination Prevention
- Out-Docking & Service
 - Full Cure / Ready for Service Coatings
 - M&R Procedures & materials

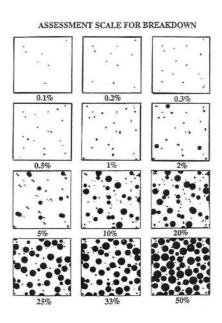
Coating Application & Common Working Practices Dry-Docking – Challenges:

Logistics:

- Locations of the Flagship, Paint Supply & Dry-Docking may be different
- Local Regulations for Import, Export, Selling & Application may vary
- Transportation & Storage of Paints in Extreme Weather Conditions.

Technological:

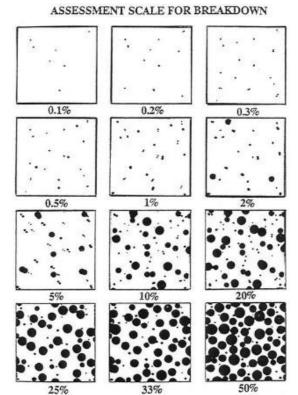
- Vessels do not go to Dry-Dock for re-coating only!
- Simultaneous jobs may not be always compatible
- Critically important equipment may not always be available

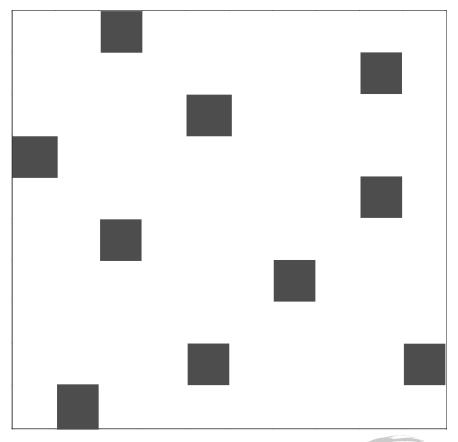

Weather & Ambient Conditions

- Different areas of the hull will be differently exposed to the elements
- In low wind Dry-Dock may contain microclimate different than outside
- Water residue on the bottom of the dock may maintain RH higher than outside
- Strong wind may blow considerable quantities of paint away
- Paint & Thinners Consumption may considerably be influenced by weather

Dry-Docking – Challenges:

- Practical assessment of:
 - Rust damages?
 - Area to Blast-Clean?!
 - Area to Sweep-Clean?!
 - Area to Cover with Paint?!





Dry-Docking – Challenges:

- Practical assessment of scattered:
 - Contamination,
 - Damages,
 - Rust, etc.

Coating Application & Common Working Practices Dry-Docking – Most Typical Activities



TEŞEKKÜRLER

sertackesebol@sgmcoating.com.tr

sertackesebol@gmail.com

05352187892

